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Fast Multiparametric Electromagnetic Full-Wave
Inversion via Solving Contracting Scattering Data

Equations Optimized by the 3-D MRF Model
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Abstract— This article presents a novel hybrid electromag-
netic full-wave inversion that combines the traditional inversion
method, i.e., the variational Born iterative method (VBIM),
with the 3-D Markov random field (MRF) model. In each
iteration, VBIM first reconstructs the model parameters of
all discretized cells in the inversion domain by solving the
discretized data equations. Then, MRF is adopted to classify
the cells according to the reconstructed parameter values, i.e.
to determine which homogenous scatterer a certain cell is
belonging to. Finally, partial cells classified as “background” are
removed, and partial cells classified as “scatterer” are merged.
Consequently, the discretized data equations gradually contract,
and the unknowns in the following VBIM iterations are reduced.
Numerical experiments show that compared with the traditional
VBIM, the proposed hybrid VBIM-MRF model can achieve
higher reconstruction accuracy for multiple model parameters.
Furthermore, the computational cost is also significantly reduced.

Index Terms— Electromagnetic scattering, full-wave inversion,
Markov random field (MRF), variational Born iterative method
(VBIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) inversion techniques and
their applications have developed rapidly in the past

decades due to the fast increase of computer speed and
memory and the development of fast forward modeling meth-
ods. The general purpose of EM inversion is to retrieve the
model parameters, such as shapes, locations, or constitutive
parameters of unknown objects in a specific region by using
the scattered field data measured at the receiver arrays located
outside that region. The applications mainly include radar
imaging of moving targets [1], breast cancer diagnostics [2],
microwave imaging of concealed weapons for security check
[3], subsurface nondestructive testing [4], controlled-source
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electromagnetic detection [5], geophysical logging [6], and
so on.

Three kinds of physical phenomena occur when the EM
wave impinges on the unknown targets. They are geometric
spreading, energy absorption, and scattering. The popular but
rigorous method to formulate the interaction between the EM
waves and the targets is using the state equation (also known as
the Lippmann–Schwinger equation [7]) and the data equation.
Unfortunately, the state and data equations are nonlinear and
ill-posed for the target parameters. Solving them iteratively
usually leads to high computational costs [7]. Several simpli-
fied or approximation approaches have been proposed to invert
for the model parameters of unknown targets with low costs.

The first kind is utilizing the geometric spreading of the
high-frequency waves to locate the positions or boundaries
of unknown targets, which is often referred to as migration
or focusing. For example, the reverse time migration (RTM)
is widely employed in subsurface detection [8] by the
ground-penetrating radar (GPR). The basic idea of RTM is to
emit the reversed reflected wave pulses recorded at the receiver
positions back to the inversion domain. Because the incident
and reversed reflected waveforms are well correlated in the
timestamps corresponding to spatial positions of the targets,
autofocusing images emerge near the targets in the inversion
domain. Another commonly used method to find the geometric
shapes and boundaries of the targets is the linear sampling
method (LSM) [9], [10] that actually is to cast the measured
EM fields at the receiver arrays into the far-field spherical
symmetrical waves radiated by a focusing point source in the
inversion domain. More sophisticated methods to reconstruct
the supports of the unknown targets include the direct sampling
method (DSM) [11] and the orthogonality sampling method
(OSM) [12]. They have the implementation processes similar
to that of LSM but can produce the target images with lower
costs or higher accuracy.

The second kind is utilizing the wave propagation delay
or amplitude attenuation inside the unknown targets, which
is often referred to as tomography and is widely applied for
medical imaging [13]. If the measured phase or attenuation of
the EM waves at the receivers can be approximately treated
as a linear function of the geometry and inhomogeneous
dielectric constants of targets, the backprojection (BP) tomog-
raphy is usually adopted to estimate the dielectric parameter
distribution of the whole inversion domain [14]. However, it is

0018-9480 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

 

https://orcid.org/0000-0002-0358-6313
https://orcid.org/0000-0002-3411-5573
https://orcid.org/0000-0001-5286-4423


4516 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 68, NO. 11, NOVEMBER 2020

assumed that the EM wave propagates such as straight-line
rays in the projection tomography. For low-frequency EM
waves, the diffraction tomography (DT) is preferred since the
diffraction effect of the EM waves surrounding the targets is
accounted for by the DT. The DT methods include the Born
and Rytov approximations [15] and so on.

The first kind of method only reconstructs the general
positions and shapes of the targets, but the dielectric para-
meters are not available. Although the BP and BA can be
used to invert for the dielectric parameters, they are only
valid for the weak scattering scenarios. Therefore, the rigorous
full-wave inversion is necessary to solve the state and data
equations to obtain both the geometric and dielectric parame-
ters of the scatterers with high contrasts and/or large electrical
dimensions. Due to the nonlinearity and ill-posedness of the
EM inverse scattering problems, a cost function with the
additive regularization or multiplicative terms is constructed to
transform the inverse problem into an optimization problem.
Several iterative methods, such as distorted iterated virtual
experiments (DIVE) [16], the Born iterative method (BIM) and
its variants, contrast source inversion (CSI), and the subspace
optimization method (SOM), have been proposed to minimize
the cost function. BIM starts from the Born approximation
and solves the state and data equations alternately until the
mismatch between the measured scattered field data and
predicted field data reaches a stop criterion [17], [18]. The
variational BIM (VBIM) [19] and distorted BIM (DBIM) [18]
are implemented similarly, but the differential variables of
model parameters are updated in the inverse computation.
Different from BIM, CSI has no forward computation. The
cost function includes the mismatches of both the data and
state equations. The induced current and dielectric contrasts
in the inversion domain are updated alternately until the total
mismatch reaches the minimum [20]. SOM is similar to CSI,
but the optimization is implemented in a subspace of the
induced current [21].

Although the deep learning techniques advanced in recent
years [22], [23] can overcome the time-consuming iterations,
offline training is inevitable before implementing the online
full-wave inversion. In addition, the deep learning scheme
is usually model-dependent, i.e., the neural network must
be trained again once the inversion model is changed. The
disadvantage of the iterative method is that it suffers from
the unaffordable computational burden for electrically large
problems, which becomes more severe for the voxel-based
3-D inversion in which there are usually a huge number of
unknowns in the discretized data equations.

In this article, we propose a hybrid full-wave inversion
method that has the merits of the traditional iterative meth-
ods but can significantly lower the computational cost. It is
assumed that the background medium inside the inversion
domain is homogeneous, and inhomogeneous scatterers can
be divided into several homogeneous subscatterers. After the
whole inversion domain is discretized, many cells share the
same dielectric parameters since both the background medium
and scatterers always take several discretized cells. However,
in the traditional iterative methods, the dielectric parameters
of all the discretized cells are solved independently. If we

can make use of the a priori information that many dis-
cretized cells in the inversion domain share the same dielectric
parameters and merge the unknowns of these cells in the
discretized data equations, the computational cost can be
reduced correspondingly. Noting that the reconstructed 3-D
model parameter distribution inside the inversion domain is
analogous to a pixel-based image and each homogeneous
scatterer or subscatterer is similar to an object embedded
in the background, we segment the 3-D image reconstructed
by the traditional iterative method using the Markov random
field (MRF) model [24]. Because VBIM converges faster than
BIM but has no need to update the Green’s functions as in the
DBM, it is selected and combined with the MRF model in this
article. In each iteration, the reconstructed model parameters
by VBIM in all the cells in the inversion domain are classified
by the MRF model. Several cells belonging to a certain
homogeneous scatterer or subscatterer or to the background
medium with high fidelity will be merged in the discretized
data equations. The merged cells belonging to the background
medium will be completely removed in the next VBIM itera-
tion since the equivalent current in the “background” cells is
null. Here, the word “merge” means that the unknowns for all
these cells in the discretized data equations are kept the same,
and the corresponding row vectors in the Fréchet derivative
matrix are added together. The word “remove” means that
the unknowns in the “background” cells will be discarded
in the discretized data equations, and the corresponding row
vectors in the Fréchet derivative matrix are deleted. In this
way, the discretized data equation gradually contracts as the
VBIM iterations continue, and thus, the computational cost
is reduced. Although the MRF model was also adopted in
the Bayesian framework for nonlinear inverse scattering in
previous works [25], [26], the implementation is quite different
from that in our work. In [25], the maximum a posteriori
(MAP) of the permittivity contrast was iteratively solved by
stochastic approaches. However, in our work, the MRF and
MAP are only used to classify the cells. The contrasts of the
model parameters are actually solved the deterministic method
VBIM. In [26], the contrasts were completely estimated by the
joint MAP. Both the deterministic and stochastic solvers were
discarded. Another popular method in the Bayesian framework
used for inverse scattering is compressive sensing (CS). For
example, in [27] and [28], the Bayesian CS was employed to
image sparse dielectric profiles. In [29], nonweak and extended
scatterers were also reconstructed using CS by incorporating
the sparsity of contrast gradient.

In our work, the MRF model is embedded inside the
iterations of the deterministic method VBIM. The organization
of this article is given as follows. In Section II, the forward
model and the inversion model for electromagnetic scattering
are briefly described. Then, the MRF and its hybridization with
VBIM are presented in detail. In Section III, two numerical
examples are used to verify the proposed hybrid method.
The first one is used to validate the feasibility and efficiency
of VBIM-MRF. The second one is to test its adaptability
to anisotropic scatterers and the antinoise ability. Finally,
in Section IV, the conclusion, discussions, and future work
are presented.
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II. METHODS

In this section, the forward and inverse scattering formulas
are briefly described in the framework of volume integral
equations. In addition, the hybridization of VBIM and MRF
models is discussed in detail.

A. Forward Model

If the layered background medium is uniaxial anisotropic
and the scatterers embedded in a certain layer are fully
anisotropic, the state equations (Lippmann–Schwinger equa-
tions) used to formulate the forward scattering are expressed
as

En
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where En
inc and Hn

inc are the incident fields evaluated in the
nth layer when the scatterers are absent. Dn

tot and Bn
tot are

the total flux densities in the nth layer when the scatterers

are present in the inversion domain D. G
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HM are the dyadic Green’s functions of uniaxial layered
media [30] linking scatterers in the mth layer and field values
in the nth layer. Equation (1) is valid for the anisotropic mag-
netodielectric scattering scenario but can be easily simplified
to isotropic scattering formulas, and their weak forms can be
found in [31], [32]. In the forward scattering computation,
we let n = m and (1) is discretized, and the total fields Dm

tot
and Bm

tot are solved by the stabilized biconjugate-gradient fast
Fourier transform (BCGS-FFT) [32].

B. Inversion Model

The inverse scattering is formulated by the data equations
that can be expressed as
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where En
sct and Hn

sct are the scattered fields measured at the
receiver arrays in the nth layer. In the inverse scattering

computation, (2) is discretized, and the contrast χ is solved
by VBIM [19], [33]. The cost function with the regularization
term in the (k + 1)th iteration is constructed as

Fk+1 = ‖δfk − Aδyk+1‖2

‖δfk‖2 + γ 2 ‖δyk+1‖2

‖δyk‖2 (3)

where δfk is the difference between the measured scattered
fields at the receiver arrays and the predicted scattered fields
in the kth iteration, the vector y is composed of the contrasts
of all the unknown dielectric parameters for all the discretized
cells in the inversion domain, A is the Fréchet derivative
matrix, γ 2 is the regularization factor, and ‖‖ denotes the
L2 norm. In the conventional BCGS-FFT-VBIM, (1) and (2)
are solved alternately, and thus, the total fields and contrasts
are updated alternately until the misfits of measured scattered
fields and predicted values reach a stop criterion. The conju-
gate gradient (CG) method is used to solve (3). One should
note that the dimensions of A and y keep unchanged in all the
iteration steps in the previous works [18], [19], [33], [34],
which usually leads to a high computational cost for 3-D
inversion problems.

C. MRF Algorithms Applied to VBIM Results

As mentioned in Section I, the reconstructed model para-
meter values in all the discretized cells of the whole inver-
sion domain are similar to the gray values of pixels of a
3-D image. The MRF model, which has been successfully
applied to image segmentation [35], can be adapted to divide
the discretized cells into “scatterer” ones and “background”
ones. As shown in the previous works [19], [33], [34], [36],
the VBIM can obtain the model parameter values in all the
cells although they may be inaccurate at the beginning of
the iterations. However, neighboring cells usually have close
reconstructed model parameters. In other words, “scatterer”
cells tend to cluster together to form a subregion or several
subregions, and “background” cells tend to cluster together to
form the subregion of the background medium. The MRF is a
probabilistic model that is good at capturing such contextual
constraints [37]. We assume that there are N = Nx × Ny ×
Nz discretized cells and K − 1 homogeneous scatterers or
subscatterers with different model parameters embedded in
the homogeneous background medium, i.e., there are K kinds
of different media. According to the Hammersley–Clifford
theorem [37], the MRF model is equivalent to the Gibbs
distribution [38] that can be compactly written as

P(xi = k) = exp
(− ∑

c∈C Vc(xi = k)
)∑K

k=1 exp
(− ∑

c∈C Vc(xi = k)
) (4)

where i is the index of the discretized cell, k is the index
of the medium kind, and P(xi = k) is the probability of the
i th cell being judged as the kth kind of medium. Vc is the
potential of the clique c, and C is the gather of all cliques [39].
Because we are dealing with 3-D images, the third neighbors
of a clique are adopted in this article, as shown in Fig. 1.
In other words, there are 26 cells surrounding the cell whose
medium kind will be determined using (4). For a practical
3-D image, the evaluation of (4) can be simply and intuitively
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Fig. 1. Third neighbors in the MRF model. The medium kind of the cell
with the white color in the center is to be determined. The cells with the
green color are the “scatterer” cells, while those with the yellow color are
the “background” cells. There are 0, 2, 4, 8, 21, and 26 “scatterer” cells
surrounding the cell with the white color in (a)–(f), respectively.

replaced [40] by computing the ratio of the total number of
cells belonging to a certain medium kind with respect to the
total number: 26. As shown in Fig. 1, if there are two kinds of
media, e.g., the homogeneous scatterer and the homogeneous
background, the probability for the cell in the center being
judged as the “scatterer” is 0 in (a), (2/26) in (b), (4/26)
in (c), (8/26) in (d), (21/26) in (e), and 1.0 in (f), respectively.

Once the probability of the classification of the i th cell is
evaluated, the probability of the model parameter of that cell
can be computed by

P(yi |xi = k) = 1√
2πσk

exp

(
− (yi − μk)

2

2σ 2
k

)
(5)

where yi is the model parameter, e.g., relative permittivity or
conductivity, in the i th cell, and μk and σk are the mean and
the variance of the model parameter, respectively, supposing
that the i th cell is classified as the kth kind of medium. Then,
the final classification (or the medium kind) of the i th cell can
be determined using the MAP

x̂i = arg max
1≤k≤K

P(xi = k|yi )

= arg max
1≤k≤K

P(yi |xi = k)P(xi = k)

P(yi )
. (6)

Since the denominator of (6) is a constant, x̂i can be evaluated
readily using results of (4) and (5).

Four points must be mentioned here.
1) The conditional probability of the model parameter is

described by the Gaussian distribution given in (5). Such
a choice is reasonable. Because the 3-D voxel-based
electromagnetic inversion problem is usually ill-posed
and the discretized data equations are always under-
determined, the model parameters in all discretized
cells solved by VBIM are pseudorandom [41]. Accord-
ing to the central limit theorem of the statistics,
the reconstructed model parameters in the discretized
cells belonging to each homogeneous subregion of the
inversion domain will automatically follow the Gaussian
distribution.

2) The mean μk and variance σk are obtained by the max-
imum likelihood estimate (MLE) from the sample cells

that are determined belonging to the same homogeneous
subregion.

3) If the number of model parameter kinds is more than
one, e.g., when both relative permittivity and conduc-
tivity are reconstructed or anisotropic scatterers are
considered, the multivariate Gaussian distribution is used
to replace (5).

4) The evaluation of (4)–(6) must be performed iteratively
until the classifications (or medium kinds) of all the
discretized cells remain unchanged. The reason is that
the classification of a discretized cell is unknown at the
beginning although the VBIM can reconstruct all the
model parameters of all the cells.

Thus, the medium kind for each cell is chosen randomly at
the beginning, and it is finally determined by solving (4)–(6)
several times. The detailed procedure of this iteration can be
found in the flowchart shown in Fig. 2.

D. Hybridization of VBIM and MRF Models

Fig. 2 shows the flowchart of the hybridization of VBIM
and the MRF model. The whole process includes three steps.

1) Step I—VBIM: The traditional VBIM is implemented to
reconstruct the model parameters of the discretized cells in the
inversion domain. The details of BCGS-FFT-VBIM have been
presented in our previous work [34] and will not be repeated
here.

2) Step II—Classification: The MRF model is used to
classify the discretized cells in the inversion domain, i.e., to
determine the medium kind of each cell. As emphasized
in Section II-C, this is an iterative process. First, we ran-
domly choose the medium kind of each cell and solve (4).
Then, the MLE is used to obtain the mean and variance
in (5), and the probability of the model parameter is computed.
Finally, the classification for each cell is determined based
on (6). These three sequential steps are repeated several times
until the classifications for all cells remain unchanged. This
iterative process is shown in the second part of Fig. 2.

3) Step III—Merging: Once the medium kind of each cell
is obtained by the MRF classification, partial cells will be
merged. Such an operation is reasonable because it is unnec-
essary to reconstruct the model parameters of two discretized
cells independently if they belong to the same medium kind.
However, the MRF is a statistical model. It is unreliable
to merge all the cells judged as the same class. Therefore,
an empirical threshold is used to select the cells with high
fidelity, which will be merged. For the “background” cells,
the i th cell satisfying the following condition

di = |yi − yb|
max

1�n�N
(|yn − yb|) < th1 (7)

will be merged. Here, yb is the true parameter of the back-
ground medium, and th1 is a user-defined threshold that is
less than 1. Equation (7) implies that only the cells with
their reconstructed model parameters close enough to the true
background model parameters will be merged. In addition,
for multiple model parameters, e.g., both permittivity and
conductivity or full tensors of arbitrary anisotropy, all model
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Fig. 2. Flowchart of the VBIM-MRF hybridization. In Step I, the VBIM is implemented to reconstruct the model parameters of all the discretized cells.
In Step II, the MRF model is employed to iteratively classify the cells. In Step III, partial “background” cells and “scatterer” cells are merged, and thus,
the dimensions of the vector y and the Fréchet derivative matrix A in (3) are reduced correspondingly. When Step III is complete, we need to go back to
implement the VBIM again. The termination condition of the whole process is that there is no cell that can be merged in five successive iterations.

parameters must satisfy (7) simultaneously. Similarly, for the
“scatterer” cells, the i th cell satisfying the following two
conditions simultaneously

P(xi = “scatterer”|yi ) > th2 (8a)

di > th3 (8b)

will be merged. Equation (8b) has a similar effect as (7) but
selects the cells with their reconstructed model parameters far
enough from the background model parameters. Equation (8a)
helps to select the cells belonging to the “scatterer” medium
with a high probability. One should note that the unknowns
in the merged “background” cells will be completely removed
from the vector y, and the corresponding rows in the Fréchet
derivative matrix A in (3) are also deleted. This operation is
valid since the equivalent current in the “background” cells
is null and has no contribution to the measured scattered
fields. Thus, the reconstructed model parameters of these
removed “background” cells will be mandatorily assigned the
known background medium parameters. By contrast, only one
unknown is kept in the vector y, and the corresponding row
vectors in the Fréchet derivative matrix A are added together
for the merged “scatterer” cells. Such an operation is also
reasonable since these cells are determined to belong to the
same homogeneous scatterer and to have the same model
parameters. The reconstructed model parameters of the kept
cell are assigned as the mean values of all the merged cells.
In addition, merging the “background” cells is performed in
each iteration of VBIM. However, only after the pure VBIM is
carried out M times, merging the “scatterer” cells begin. This
is because VBIM only updates the variations of the unknowns
in each iteration, and the initial model parameter values of
all the cells are set the same as the background medium
parameters. After the VBIM is performed enough times,

the reconstructed model parameters of the scatterers approach
the true values. At this stage, it is more reliable to merge
the “scatterer” cells. The termination condition of the whole
hybridization process is that there is no cell that can be merged
in five successive iterations.

E. Comparisons With Other Methods

The proposed VBIM-MRF applies the MLE and MAP to
VBIM results to obtain the classification of each discretized
cell in the inversion domain. In each iteration, partial “back-
ground” cells are removed, and partial “scatterer” cells are
merged. Consequently, the dimensions of both the unknown
vector and the Fréchet derivative matrix in the discretized
data equation are reduced. Comparisons of the proposed
VBIM-MRF with other methods are analyzed in the following.

1) Comparison With VBIM: The hybrid VBIM-MRF out-
performs the pure VBIM for both the reconstruction accuracy
and implementation efficiency. Because the inversion domain
is gradually compressed by the MRF algorithm in successive
iterations of VBIM, the number of unknowns in the discretized
data equation is reduced. However, the measured scattered
field data remain unchanged. As a result, the ill-posedness
of the inverse problem is actually mitigated. The VBIM
becomes easier to find an optimized solution. On the other
hand, both the time and memory consumption of VBIM-MRF
are also lowered due to the compressed inversion domain.
Of course, these advantages are only valid when VBIM-MRF
can converge in each iteration, i.e., the three thresholds, th1,
th2, and th3, in (7) and (8) are properly selected.

2) Comparison With Regularization: The MRF algorithm
behaves like a regularization for the inverse problem since
it also mitigates its ill-posedness. However, they are not the
same since the goal is achieved in different ways. The MRF
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directly reduces the number of unknowns in the discretized
data equation. However, the regularization is to add or mul-
tiply a penalty term to the cost function to mitigate the
ill-posedness, e.g., the total variation (TV) used to capture
sharp boundaries between the scatterers and the background
medium [42]. The regularization reduces the searching space
of the solutions through the additional penalty terms. However,
the MRF realizes this purpose by deleting “background” cells
or merging “scatterer” cells. Of course, because the MRF
algorithm interferes with the convergence process of VBIM,
the convergence curve of VBIM-MRF is not as smooth as that
of the pure VBIM, which will be shown by the first numerical
example in Section III.

3) Comparison With Iterative Multiscaling Approach:
The proposed hybrid VBIM-MRF is similar to the iterative
multiscaling approach (IMSA) proposed in [43] and [44]
or the adaptive multiresolution technique given in [45]
since the inversion domain is downsized iteratively for all
these methods. However, they also show obvious differences.
In VBIM-MRF, there is only one iterative loop for the
full-wave inversion. If three thresholds, th1, th2, and th3,
in (7) and (8) are chosen properly and VBIM-MRF can
converge in each iteration and enter the next iteration, partial
“background” cells will be removed, and thus, the inversion
domain is gradually downsized. By contrast, in IMSA or the
adaptive multiresolution technique, there are two nested loops.
The outer loop is searching for the approximate locations of
the scatterers, so as to reduce the inversion domain. The inner
loop is the true full-wave inversion iteration. The discretization
of the inversion domain is fixed in VBIM-MRF, while it is
dynamically adjusted in the IMSA.

4) Comparison With Other Hybrid Methods: VBIM-MRF
is different from the recently proposed hybrid method,
i.e., VBIM-maximum entropy thresholding (MET) [46].
VBIM-MRF not only removes the “background” cells but
also classifies all the homogeneous scatterers or subscatterers
and merges the cells belonging to the same class. However,
VBIM-MET only segments the “background” and “scatterer”
subregions in the inversion domain. Two different homo-
geneous subscatterers inside one scatterer cannot be distin-
guished by VBIM-MET. VBIM-MRF is also different from the
hybrid method presented in [47] since the MAP is employed
in this article to judge the medium kind for each discretized
cell. Another major difference is that only the “background”
cells are removed by expectation maximization in [47]. The
“scatterer” cells are not merged.

III. NUMERICAL RESULTS

In this section, we use two numerical examples to verify the
proposed hybrid method. The background medium includes
three layers. The top and bottom layers are air. The scatterers
are embedded in the homogeneous middle layer. The trans-
mitter and receiver arrays are placed in the top and bottom
layers. In the first example, the scatterers are isotropic and
homogeneous. In the second example, the scatterer is fully
anisotropic and inhomogeneous. All the measured scattered
field data are simulated by the BCGS-FFT solver. In both
numerical experiments, three thresholds, th1, th2, and th3,

Fig. 3. Configuration of the inversion model with multiple homogeneous
scatterers embedded in the middle layer.

in (7) and (8) are set as 0.4, 0.5, and 0.6, respectively. A larger
th1 can accelerate the removal of the confirmed “background”
cells, but some “scatterer” cells may be incorrectly deleted.
As a result, the iteration of VBIM-MRF is not as stable as that
of VBIM or even fails to converge. By contrast, a smaller th1
can guarantee the safety, but the discretized data equations also
contract slower due to the slow removal of “background” cells.
The thresholds th2 and th3 play similar roles for the contract-
ing data equations by controlling the merging of the “scatterer”
cells. Therefore, there is a tradeoff between the reliability
and efficiency of VBIM-MRF implementation. Although the
aforementioned three threshold values are empirical, the two
numerical examples in this section will show that they can
achieve a good balance between reliability and efficiency. The
parameter M in the flowchart of Fig. 2 indicates the beginning
merging step of the “scatterer” cells. It is set as 4 in the first
numerical example but 10 in the second numerical example.
Usually, more iterations of VBIM are necessary to reconstruct
the preliminary profiles for anisotropic scatterers with multiple
model parameters. Only when the reconstructed preliminary
profiles of scatterers can be distinguished from the background
medium in the inversion domain, merging the “scatterer” cells
begins. If it starts too early, some “background” cells will
also be merged into the scatterer. However, if it is too late,
the merging almost becomes meaningless for the reduction
of the computational cost of VBIM. In addition, in order to
quantitatively evaluate the reconstruction performance of the
proposed method, we use the data misfit and model misfit
defined in [36, eqs. (16) and (17)]. The data misfit indicates
how well the measured scattered fields match the predicted
scattered fields in the iterations. The model misfit indicates
how well the reconstructed model parameters match the true
model parameters in the whole inversion domain. All the
experiments are performed on a workstation with 20-core
Xeon E2650 v3 2.3-GHz CPU, 512-GB RAM.

A. Multiple Homogeneous Scatterers Embedded in the
Middle Layer

1) Inversion Model Configuration: As shown in Fig. 3, there
are three scatterers embedded in the middle layer. The radii of
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Fig. 4. Ground truth and reconstructed 2-D slices at y = 0 m in different iteration steps of VBIM. (a) and (h) Ground truth. (b)–(g) Inversion results of
the relative permittivity in the first, third, fourth, sixth, 14th, and last steps. (i)–(n) Reconstructed conductivity in the same steps. Dotted lines: true shapes of
scatterers.

two spheres are 0.1 m, and their centers are located at (−0.24,
0, 0.64) m and (0.24, 0, 0.64) m, respectively. The hollow
cuboid has the dimensions of 0.4 m × 0.28 m × 0.4 m with its
center located at (0, 0, 0.38) m. The size of the hole is 0.2 m ×
0.28 m × 0.2 m. The dielectric parameters of three scatterers
are the same. They are ε = 3.0 and σ = 5 mS/m. The
inversion domain D has the dimensions of 0.8 m × 0.8 m ×
0.8 m. Its center is located at (0, 0, 0.5) m and is divided
into 40 × 40 × 40 cells. The size of each cell is 
x = 
y =

z = 0.02 m. The dielectric parameters of the background
medium are ε = 2.0 and σ = 2 mS/m. Thus, there are totally
128 000 unknowns to be reconstructed; 50 transmitters are
uniformly located in two 2.4 m × 2.4 m planes at z = −0.2 m
and z = 1.2 m, respectively. The operating frequency is
300 MHz. The scattered fields are collected by 72 receivers
arrays uniformly located in two 4.0 m × 4.0 m planes at
z = −0.1 m and z = 1.1 m, respectively. Thus, there are
43 200 data equations if we separate the real and imaginary
parts of the scattered fields.

2) Downsizing the Inversion Domain: In each iteration,
after the model parameters of all cells are reconstructed by
VBIM, the MRF model is first used to classify the cells in the
inversion domain. Then, partial confirmed “background” cells
with high fidelity are merged and removed. Beginning in the
fourth step, partial confirmed “scatterer” cells are also merged.
Here, the word “confirmed” means the reconstructed model
parameters in that cell satisfy (7) or (8). Fig. 4 shows the 2-D
slices for the xz planes of the ground truth and the inversion
results by VBIM-MRF in different iteration steps. In the
full-wave inversion by VBIM, the initial model parameters
of all cells in the inversion domain are assigned as the known
background medium dielectric constants. Because the dielec-
tric parameters of scatterers are different from the background
medium parameters, it is inappropriate to merge the “scatterer”
cells at the beginning of VBIM iterations. However, it is
feasible to merge and remove the confirmed “background”
cells at the beginning since the initial model parameters of
all cells are the same as the background medium parameters.
Therefore, in the first three steps, we only remove the “back-
ground” cells. As shown in Fig. 4(b) and (i), in the first step,
the reconstructed model parameters of some “background”
cells are close to the true parameters of the background
medium, while the reconstructed parameters of “scatterer”

cells are quite different from the true parameters. After some
confirmed “background” cells are removed, the mean values
of the “scatterer” cells gradually tend to be stable, as shown
in Fig. 4(c) and (j). At this moment, we begin to merge “scat-
terer” cells, i.e., from the fourth step, the “background” cells
are removed, and “scatterer” cells are merged synchronously.
As shown in Fig. 4(d) and (k), because partial confirmed
“scatterer” cells are merged, the distribution of the recon-
structed model parameters in the scatterer subregion is more
uniform. Furthermore, compared with the results in the third
step, the structures of relative permittivity and conductivity of
scatterers become more consistent. The poor inversion result
of the conductivity shown in Fig. 4(j) is obviously improved.
After the sixth step, most cells have been removed or merged,
and only some cells locating near the boundaries between
the scatterers and the background medium remain. As shown
in Fig. 4(e)–(f) and (l)–(m), the inversion results after the 6th
step do not change much. When no cell can be removed or
merged in five consecutive steps, the termination condition
is satisfied, and the whole hybridized process finishes. The
final inversion results are shown in Fig. 4(g) and (n). It can
be seen that the inversion results are very close to the ground
truth. Meanwhile, the reconstructed model parameters of all
discretized cells of the scatterers are the same due to the
merging.

3) Classifying Discretized Cells: Fig. 5 shows the iterative
process of MRF classification after the fourth-step VBIM
outputs model parameter values in the discretized cells of
the inversion domain. The first row shows the xz plane
2-D slices of the cell classes in different iterative steps.
Blue indicates that the cell is classified as the background
medium, while red indicates that the cell is classified as the
scatterer. In other words, the label value of the background
medium is 1, while it is 2 for the scatterer. The second
row shows the value of P(xi = 1|yi) in different iteration
steps, while the third row shows the value of P(xi = 2|yi )
for the i th cell. In the beginning, we adopt the uniform
distribution and randomly assign class labels to the reaming
cells in the inversion domain, as shown in Fig. 5(b). As a
result, P(xi = 1|yi) and P(xi = 2|yi ) for the i th cell
are equal to 0.5, as shown in Fig. 5(i) and (p). Because the
MRF model incorporates the spatial connection of neighboring
cells, the “scatterer” cells generated in the first step are
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Fig. 5. 2-D slices at y = 0 m in different iterative steps of MRF classification for the fourth-step VBIM results. First row: MRF classification results. Second
row: probability of cells belonging to the background. Third row: probability of cells belonging to scatterers. First column: ground truth. From the second
column to the seventh column, they are for the first, second, third, fourth, eighth, and last steps of the iterations of the MRF classification.

gradually connected with others. Meanwhile, P(xi |yi ) also
changes, as shown in Fig. 5(c), (g), and (q). Following this,
the classification results are closer and closer to the ground
truth with the iterations continue, as shown in Fig. 5(d)–(g).
When the classifications for all the cells keep unchanged,
the iteration stops. As can be seen in Fig. 5(n) and (u),
the probability of most cells belonging to the scatterers is very
close to 0 or 1, while the probability for cells located near the
boundaries between scatterers and the background medium is
different. There are two reasons for such a phenomenon. One
is that the parameter values of the cells near the boundaries
reconstructed by VBIM always fall between those of the
background medium and the scatterers due to the L2 norm
cost function, which leads to P(yi |xi = 2) and P(yi |xi = 1)
having close values. Second, because there is almost the same
number of “background” cells and “scatterer” cells attached
to the boundaries, P(xi = 2) and P(xi = 1) are also close.

4) Confirming Removed and Merged Cells: Once the MRF
classification is finalized, i.e., the medium kind of each cell
is determined, the operations of merging and removing will
be implemented. Unfortunately, as shown in Fig. 4(c) and (j),
the inversion results are not ideal in the early stages of VBIM
iterations, and thus, directly removing “background” cells and
merging “scatterer” cells determined by the MRF classification
are not safe. Additional constraints are necessary. Only the
“background” cells with the reconstructed model parameters
satisfying the inequality in (7) will be removed. Only the
“scatterer” cells with the reconstructed model parameters
satisfying the inequalities in (8) will be merged. Fig. 6 shows
the merging process applied to the reconstructed results by
VBIM in the fourth iteration step. Fig. 6(a) and (b) shows the
relative permittivity and conductivity reconstructed by VBIM.
Fig. 6(c) shows the values of di in (7) and (8). By combing
them with the probability values shown in Fig. 5(n) and (u),
we can obtain the final merging results shown in Fig. 6(d).
Red indicates that these “scatterer” cells have been merged,
while green indicates that these cells have been removed.

Fig. 6. Merging process illustrated by the 2-D xz slices at y = 0
m. The model parameters are reconstructed by VBIM in the fourth itera-
tion. (a) Reconstructed relative permittivity. (b) Reconstructed conductivity.
(c) Values of di in (7) and (8). (d) Cell merging results. The label value
2 denotes “scatterer,” 1 denotes “background,” and 0 denotes cell class to be
determined.

Blue indicates that these cells remain, and they will participate
in the next VBIM iteration. Because only partial cells are
removed or merged, the shape of the merging result shown
in Fig. 6(d) is different from that of the classification result
shown in Fig. 4(g).

5) Comparison of VBIM-MRF and VBIM: Fig. 7 shows
the comparisons of reconstructed 3-D isosurfaces and profiles
of relative permittivity and conductivity between VBIM-MRF
and VBIM. It can be seen that the 3-D permittivity profiles
reconstructed by VBIM are not distorted too much. However,
the reconstructed conductivity profiles are poor. Fortunately,
when the hybridized VBIM-MRF is employed, the structure
consistency between permittivity and conductivity is manda-
torily enforced through (5)–(8). As a result, the reconstructed
shape is greatly improved. Meanwhile, due to the removal of
the “background” cells and the merging of the “scatterer” cells,
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Fig. 7. Reconstructed 3-D isosurfaces and profiles of relative permittivity
and conductivity. (a)–(d) By VBIM. (e)–(h) By VBIM-MRF.

Fig. 8. Comparisons of the converging processes of VBIM and VBIM-MRF.
(a) Variations of data misfits of the scattered fields in different iteration steps.
(b) Ratio of unknowns in different iteration steps to the total unknowns in the
first step. (c) Time consumed by BCGS, matrix assembly, and CG in different
iteration steps. (d) Memory consumed in different steps.

the VBIM-MRF is able to reconstruct more precise model
parameters compared with the conventional VBIM, as shown
in Fig. 7(e)–(h).

Fig. 8(a) shows the variations of data misfits of the scattered
fields in each iteration step. We can see that VBIM-MRF
converges faster than VBIM but not as stable as VBIM.
This is because the discretized cells are merged and the
inversion domain is mandatorily changed in the iterations of
VBIM-MRF. Fig. 8(b) shows the variations of the remain-
ing cells in the computation domain in each iteration step.
As can be seen, for VBIM-MRF, the number of unknowns
decreases quickly in the first six steps. After this, it changes
slowly. This is because most “background” cells have been
removed and most “scatterer” cells have been merged in
the first six steps. By contrast, for VBIM, the cell number
keeps unchanged in the whole iteration process. Therefore,
the discretized data equations of (2) gradually contract in the
iterations of VBIM-MRF. Fig. 8(c) shows the time spent by
the most time-consuming parts (BCGS, assembling the Fréchet
derivative matrix and CG) in each iteration step. Due to the
decrease in the number of unknowns, except for BCGS that
has nothing to do with the number of unknowns, the compu-
tational time of assembling the Fréchet derivative matrix and

Fig. 9. Reconstructed 2-D xz slices at y = 0 m by VBIM-MRF and VBIM for
different noise levels. From the first column to the fourth column, the SNRs are
30, 25, 20, and 15 dB, respectively. (a)–(d) Permittivity profiles reconstructed
by VBIM-MRF. (e)–(h) Permittivity profiles reconstructed by VBIM. (i)–(l)
Conductivity profiles reconstructed by VBIM-MRF. (m)–(p) Conductivity
profiles reconstructed by VBIM.

TABLE I

MODEL MISFITS (%) FOR VBIM-MRF AND VBIM WHEN THE
SCATTERED FIELD DATA ARE CONTAMINATED BY NOISE

WITH DIFFERENT SNRS

CG is less in VBIM-MRF compared with those in VBIM.
Furthermore, due to the poor reconstructed conductivity profile
by VBIM [see Fig. 7(d)], the time consumption of CG in
VBIM shows an upward trend. Fig. 8(d) shows the variations
of memory consumption in each iteration step. Because the
memory consumption is approximately in direct proportion to
the number of unknowns of the discretized data equations,
the overall trends of memory consumption are the same
as those shown (b). Memory consumption of VBIM-MRF
decreases rapidly, while that of VBIM keeps unchanged.

6) Antinoise Test: Fig. 9 shows the reconstructed 2-D xz
slices by VBIM-MRF and VBIM when the scattered field
data are contaminated by the white Gaussian noise. The noise
level is defined according to the signal-to-noise ratio (SNR)
of power. The model misfits of the reconstruction are listed
in Table I. We can see that VBIM-MRF certainly has a
stronger antinoise ability than pure VBIM. The reconstructed
shapes of the permittivity and conductivity are well kept when
VBIM-MRF is employed. This benefits from the constraints
of (7) and (8) applied to multiple model parameters simultane-
ously. For the pure VBIM, there is no constraint for multiple
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TABLE II

MIDDLE LAYER BACKGROUND PARAMETERS AND THE TRUE AND RECONSTRUCTED MODEL PARAMETERS OF TWO CUBOIDS

TABLE III

PROCESS OF DETERMINING THE MRF CLASSIFICATION NUMBER

Fig. 10. Configuration of the inversion model with an inhomogeneous cube
embedded in the middle layer. The cube includes two cuboids that have the
same dimensions of 0.28 m × 0.28 m × 0.14 m.

parameters in the inversion process. The shapes of conductivity
are rather bad when noise is added.

B. Inhomogeneous Cube Embedded in the Middle Layer

1) Inversion Model Configuration: In this case, we recon-
struct an inhomogeneous cube, including two homogeneous
cuboids with the dimensions of 0.28 m × 0.28 m × 0.14 m,
as shown in Fig. 10. The middle layer is uniaxial, while two
cuboids are fully anisotropic with the symmetrical constitutive
tensors. Their true model parameters are listed in Table II. The
inversion domain enclosing the scatterer has the dimensions
of 0.6 m × 0.6 m × 0.6 m. It is divided into 27 000 cells.
The size of each cell is 
x = 
y = 
z = 0.02 m.
Thus, there are totally 486 000 unknowns to be reconstructed.

The 72 transmitters are uniformly placed in two 1.0 m ×
1.0 m planes at z = −0.2 m and z = 1.0 m, respectively.
Two operation frequencies 130 and 60 MHz are chosen. The
scattered fields are collected by two arrays of 98 receivers
that are uniformly located in two 1.5 m × 1.5 m planes at
z = −0.1 m and z = 0.9 m, respectively. Because only
the scattered electric fields with 30-dB white Gaussian noise
added are used for the inversion, there are totally 84 672 data
equations. In addition, only the diagonal elements are used in
MRF classification since the values of off-diagonal elements
of the model parameter tensors are much smaller than diagonal
ones.

2) Determining the Classification Number: It is necessary
to determine the number of medium kinds inside the inversion
domain if it is unknown. The basic idea is to implement the
pure VBIM several times, guess a relatively large number, and
iteratively classify the VBIM results according to the assumed
or the following adjusted classification number until the results
become almost unchanged. For the current example, there are
totally three kinds of media in the inversion domain, including
the uniaxial background medium. We first implement the pure
VBIM five times and obtain the preliminary reconstructed
model parameters. Then, we guess that there are nine kinds of
media and carry out the MRF classification iteratively. In each
iteration, the classification number is decreased by one if the
classification satisfies one of the following two conditions:
1) the ratio of the cell number of a certain class with respect to
the total cell number in the inversion domain is less than 2%
and 2) the differences of the mean values of ε′ and μ′ between
two classes are both less than 0.1, and the difference of the
mean values of σ ′ is less than 0.1 mS/m. The whole process
of determining the classification number is shown in Table III.
When both 1) and 2) are not satisfied, the iterative MRF
classification procedure terminates. One should note that ε′,
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Fig. 11. Reconstructed 3-D profiles of the two connected cuboids by VBIM-MRF. (a)–(f) Relative permittivity. (g)–(l) Relative permeability. (m)–(r)
Conductivity.

Fig. 12. Reconstructed 3-D profiles of the two connected cuboids by the pure VBIM. (a)–(f) Relative permittivity. (g)–(l) Relative permeability. (m)–(r)
Conductivity.

μ′ and σ ′ are defined as

ε′ = ε11 + ε22 + ε33

3
(9a)

μ′ = μ11 + μ22 + μ33

3
(9b)

σ ′ = σ11 + σ22 + σ33

3
(9c)

since we use the mean value of three diagonal parameters
to determine the classification number. When the computed
classification number is larger than the true classification
number in a certain iteration step, the cells of some classes
are too few, and the ratio approaches zero. In this situation,

the mean values of ε′, μ′, and σ ′ are meaningless, and we
label them “Nan” in Table III.

3) Full-Wave Inversion of the Anisotropic Scatterer by
VBIM-MRF: Based on the obtained classification number,
we perform the full-wave inversion using the VBIM-MRF. The
reconstructed 3-D profiles are shown in Fig. 11, and the model
parameters are listed in Table II. We can see that the hybrid
method also shows good performance for fully anisotropic
scatterers with 18 unknowns even when the scattered field data
are contaminated by 30-dB noise. We also use pure VBIM
to reconstruct the same anisotropic scatterer, and the results
are shown in Fig. 12. We can see that only the approximate
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location of the scatterer is found. The boundary between two
different subscatterers cannot be located by VBIM.

IV. CONCLUSION AND DISCUSSION

In this article, the traditional full-wave variational BIM is
optimized by the MRF model. The discretized cells in the
inversion domain are classified according to the reconstructed
model parameter values, and partial “background” cells are
removed and partial “scatterer” cells merged in each iteration.
As a result, the discretized data equations gradually contract.
Both the time and memory costs are significantly reduced
compared with the cost of pure VBIM.

Two model parameters, including the permittivity and the
conductivity, are reconstructed by VBIM-MRF in the first
numerical example. The intermediate inversion results in each
VBIM iteration clearly illustrate the facilitative effect of the
MRF model, and the final reconstructed results show the feasi-
bility and effectiveness of the hybrid method. The comparisons
between the hybrid and the traditional methods show that the
VBIM-MRF outperforms the pure VBIM for the inversion
precision, implementation efficiency, and the antinoise ability.
In the second numerical example, it is demonstrated that the
proposed hybrid method is also capable of inverting for mul-
tiple parameters of fully anisotropic inhomogeneous scatterers
even when the measured data are contaminated by noise.
In addition, an iterative classification method is proposed to
compute the number of medium kind if it is unknown before
the full-wave inversion.

One may raise the question regarding the applicability of
the proposed VBIM-MRF for multiple homogeneous scatterers
or subscatterers embedded in the inversion domain. Because
the MRF model is based on the statistical results of a lot of
discretized cells that share the same true model parameters,
only when each homogeneous scatterer or subscatterer takes
enough discretized cells, the parameter estimation and classifi-
cation can be performed. Therefore, the electrical sizes of the
scatterers will be rather large if a large number of homoge-
neous scatterers or subscatterers are included in the inversion
domain. In this situation, the iteration of VBIM will fail to
converge due to the strong scattering. Another disadvantage of
the proposed hybrid method is that its efficiency and reliability
depend on the thresholds th1, th2, and th3 in (7) and (8).
Inappropriate values of these parameters may cause unstable
iterations of VBIM or even the convergence failure.

Future work will be focused on two aspects. First, recon-
struct scatterers including arbitrary inhomogeneous media or
even continuously varying media for which the proposed
method will fail. One possible solution for such EM scattering
scenarios is adding some gradient constraints to the unknown
model parameters in the cost function and to adopt other aux-
iliary statistical methods. Second, validate the hybrid method
using the laboratory experimental data. However, this will be
left as future work.
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